Opening Times: Mon - Sat 8.00 - 18.00
1. Bhuiyan, M. A. E., Nikolopoulos, E. I., Anagnostou, E. N., Polcher, J, C., Dutra, E., Fink, G., Martinez de la Torre A., Munier, S., .: Assessment of Precipitation Error Propagation in Multi-Model Global Water Resources Reanalysis, https://doi.org/10.5194/hess-2018-434 2019
2.Bhuiyan, M. A. E., Nikolopoulos, E. I., Anagnostou, E. N., Quintana-Seguí, P., and Barella-Ortiz, A.: A Nonparametric Statistical Technique for Combining Global Precipitation Datasets: Development and Hydrological Evaluation over the Iberian Peninsula, Hydrol. Earth Syst. Sci., https://doi.org/10.5194/hess-2017-268 ,2018.
3. Bhuiyan, M. A. E., E. I., Anagnostou, P.E. Kirstetter: A non-parametric statistical technique for modeling overland TMI (2A12) rainfall retrieval error. IEEE Geoscience and Remote Sensing Letters, 14, 1898–1902, DOI: 10.1109/LGRS.2017.2728658 , 2017.
4. Bhuiyan, M. A. E., Nikolopoulos, and E. I., Anagnostou: Machine learning based blending of satellite precipitation datasets: A multi-regional complex terrain evaluation in the tropics, Journal of Hydrometeorology, 2019.
5. Bhuiyan, M. A. E, Begum, F., Ilham,S. and Khan, R.S.,: Advanced Wind Speed Prediction using Convective Weather Variables through Machine Learning Application. Applied Computing and Geosciences,2019.
6. Nikolopoulos, E. I., Destro, E., Bhuiyan, M. A. E., Borga, M., and Anagnostou, E. N.: Evaluation of predictive models for post-fire debris flows occurrence in the western United States, Nat. Hazards Earth Syst. Sci., https://doi.org/10.5194/nhess-2018-85 , 2018.
7. D. Cerrai, D. W. Wanik, M. A. E. Bhuiyan, X. Zhang, J. Yang, M. E. , B. Frediani and E.N. Anagnostou: Advancing Storm Outage Prediction Modeling through New Representations of Weather and Vegetation. IEEE ACCESS.
8.Yang, F., Wanik, D.W., Cerrai, D.; Bhuiyan, M.A.E.; Anagnostou, E.N. Quantifying Uncertainty in Machine Learning-Based Power Outage Prediction Model Training: A Tool for Sustainable Storm Restoration. Sustainability 2020, 12, 1525.
9. Amit Ranjan Mondal, M. A. E. Bhuiyan, and F. Yang: Advanced framework for crash severity prediction using multiple Machine Learning Application, Transportation Research Record, 2019, under review.
10. Yagmur Derin, M. A. E. Bhuiyan, and E.N. Anagnostou: Error Modeling of Passive Microwave Precipitation Products over Complex Terrain, IEEE Geosci. Remote Sensing, 2019, final stage for submission.
11. Witharana, C., Bhuiyan, M. A. E., and Liljedahl, A. k.:Understanding the synergies of deep learning and data fusion of multispectral and panchromatic high resolution commercial satellite imagery for automated ice-wedge polygon detection,ISPRS Journal of Photogrammetry and Remote Sensing,2020,under review.
12. Bhuiyan, M. A. E., Witharana, C., and Liljedahl, A. k.: Characterizing Satellite Imagery Data and Color Channels for automatically ice-wedge mapping using deep learning-Mask R-CNN algorithm, ISPRS International Journal of Geo-Information, MDPI, 2020, final stage for submission.